
Universität Freiburg Georges-Köhler Allee, Geb. 51
Institut für Informatik D-79110 Freiburg
Prof. Dr. G. Lausen lausen@informatik.uni-freiburg.de
Alexander Schätzle schaetzle@informatik.uni-freiburg.de
Martin Przyjaciel-Zablocki zablocki@informatik.uni-freiburg.de

Data Models and Query Languages
Summerterm 2013

8. Exercise Sheet: TriAL & SPARQL

Discussion: 12.07.2013

Submission Guidelines: This is a mandatory exercise sheet where you have to get 50% of the points for
exercise 2 to qualify for the exam! Hand in your solutions at the beginning of the tutorial on 12.07.2013.

Exercise 1 (TriAL)
Formulate the reachability problems from a) and b) using SPARQL 1.1 and nSPARQL or explain why
they are not expressible in that particular language:

a) Reach→ defined by (E 1
1,2,3′

3=1′):

sibilities, two of which are illustrated below.

Query Reach→ looks for pairs (x, z) connected by paths
of the following shape:

x z· · ·

and Reach1 looks for the following connection pattern:

· · ·

x

z

But can such patterns be defined by existing RDF query
languages? Or can they be defined by existing graph
query languages under some graph encoding of RDF?

To answer these, we need to understand which navi-
gational facilities are available for RDF data. A re-
cent survey of graph database systems [3] shows that,
by and large, they either offer support for triples, or
they do graphs and then can express proper reacha-
bility queries. An attempt to add navigation to RDF
languages was made in [31], where a language called
nSPARQL was defined by taking SPARQL [20, 30],
the standard query language for RDF, and extending
it with a navigational mechanism provided by nested
regular expressions. These are essentially regular path
queries with XPath-inspired node tests. The evaluation
of those uses essentially a graph encoding of RDF. As
the starting point of our investigation, we show that
there are natural reachability patterns for triples, sim-
ilar to those shown above, that cannot be defined in
graph encodings of RDF [5] using nested regular ex-
pressions, nor in nSPARQL itself.

Thus, navigational patterns over triples are beyond
reach of both RDF languages and graph query lan-
guages that work on encodings of RDF. The solu-
tion is then to design languages that work directly on
RDF triples, and have both relational and navigational
querying facilities, just like graph query languages. Our
goal, therefore, is to adapt graph database techniques
for direct RDF querying.

A crucial property of a query language is closure:
queries should return objects of the same kind as
their input. Closed languages, therefore, are compo-
sitional: their operators can be applied to results of
queries. Using graph languages for RDF suffers from
non-compositionality: for instance, RPQs return graphs
rather than triples. So we start by defining a closed lan-
guage for triples. To understand its basic operations, we
first look at a language that has essentially first-order
expressivity, and then add navigational features.

We take relational algebra as the basic language.
Clearly projection violates closure so we throw it away.

Selection and set operations, on the other hand, are
fine. The problematic operation is Cartesian product: if
T, T ′ are sets of triples, then T×T ′ is not a set of triples
but rather a set of 6-tuples. What do we do then? We
shall need reachability in the language, and for graphs,
reachability is computed by iterating composition of re-
lations. The composition operation for binary relations
preserves closure: a pair (x, y) is in the composition
R ◦ R′ of R and R′ iff (x, z) ∈ R and (z, y) ∈ R′ for
some z. So this is a join of R and R′ and it seems that
what we need is it analog for triples.

But queries Reach→ and Reach1 demonstrate that there
is no such thing as the reachability for triples. In fact, we
shall see that there is not even a nice symmetric ana-
log of composition for triples. So instead, we add all
possible joins that keep the algebra closed. The result-
ing language is called Triple Algebra, denoted by TriAL.
We then add an iteration mechanism to it, to enable it
to express reachability queries based on different joins,
and obtain Recursive Triple Algebra TriAL∗.

The algebra TriAL∗ can express both reachability pat-
terns above, as well as queries we prove to be inexpress-
ible in nSPARQL. It has a declarative language asso-
ciated with it, namely a fragment of Datalog. It has
good query evaluation bounds: combined complexity
is polynomial, given by low-degree polynomials. More-
over, we exhibit a fragment with complexity of the order
O(|e| · |O| · |T |), where e is the query, O is the set of ob-
jects, and T is the set of triples. This is a very natural
fragment, as it restricts arbitrary recursive definitions
to those essentially defining reachability properties.

The model we use is slightly more general than just
triples of objects and amounts to combining triplestores
as in, e.g., [22] with the representation of objects used in
the Neo4j database [14, 29]. Each object participating
in a triple comes associated with a set of attributes. Of
course this can be modeled via more triples, but the
model we use is conceptually cleaner and leads to a
more natural comparison with other query languages.

The first of those comparisons is with relational query-
ing. We show that TriAL lives between FO3 and FO6

(recall that FOk refers to the fragment of First-Order
Logic using only k variables). In fact it contains FO3,
is contained in FO6, and is incomparable with FO4 and
FO5. A similar results holds for TriAL∗ and transitive
closure logic.

On the graph querying side, we show that the naviga-
tional power of TriAL∗ subsumes that of both regular
path queries and nested regular expressions. In fact it
subsumes a version of graph XPath recently proposed
for graph databases [25]. We also compare it with con-
junctive RPQs [12] and some of their extensions studied
in [10, 11]. When it comes to graphs with data held in
their nodes, we show that TriAL∗ continues to subsume
some of the formalisms proposed in that context, such
as graph XPath expanded with node tests and some
types of regular expressions with data values [26, 25].

2

b) Reach↗ defined by (11′,2′,3
1=2′ E):

sibilities, two of which are illustrated below.

Query Reach→ looks for pairs (x, z) connected by paths
of the following shape:

x z· · ·

and Reach1 looks for the following connection pattern:

· · ·

x

z

But can such patterns be defined by existing RDF query
languages? Or can they be defined by existing graph
query languages under some graph encoding of RDF?

To answer these, we need to understand which navi-
gational facilities are available for RDF data. A re-
cent survey of graph database systems [3] shows that,
by and large, they either offer support for triples, or
they do graphs and then can express proper reacha-
bility queries. An attempt to add navigation to RDF
languages was made in [31], where a language called
nSPARQL was defined by taking SPARQL [20, 30],
the standard query language for RDF, and extending
it with a navigational mechanism provided by nested
regular expressions. These are essentially regular path
queries with XPath-inspired node tests. The evaluation
of those uses essentially a graph encoding of RDF. As
the starting point of our investigation, we show that
there are natural reachability patterns for triples, sim-
ilar to those shown above, that cannot be defined in
graph encodings of RDF [5] using nested regular ex-
pressions, nor in nSPARQL itself.

Thus, navigational patterns over triples are beyond
reach of both RDF languages and graph query lan-
guages that work on encodings of RDF. The solu-
tion is then to design languages that work directly on
RDF triples, and have both relational and navigational
querying facilities, just like graph query languages. Our
goal, therefore, is to adapt graph database techniques
for direct RDF querying.

A crucial property of a query language is closure:
queries should return objects of the same kind as
their input. Closed languages, therefore, are compo-
sitional: their operators can be applied to results of
queries. Using graph languages for RDF suffers from
non-compositionality: for instance, RPQs return graphs
rather than triples. So we start by defining a closed lan-
guage for triples. To understand its basic operations, we
first look at a language that has essentially first-order
expressivity, and then add navigational features.

We take relational algebra as the basic language.
Clearly projection violates closure so we throw it away.

Selection and set operations, on the other hand, are
fine. The problematic operation is Cartesian product: if
T, T ′ are sets of triples, then T×T ′ is not a set of triples
but rather a set of 6-tuples. What do we do then? We
shall need reachability in the language, and for graphs,
reachability is computed by iterating composition of re-
lations. The composition operation for binary relations
preserves closure: a pair (x, y) is in the composition
R ◦ R′ of R and R′ iff (x, z) ∈ R and (z, y) ∈ R′ for
some z. So this is a join of R and R′ and it seems that
what we need is it analog for triples.

But queries Reach→ and Reach1 demonstrate that there
is no such thing as the reachability for triples. In fact, we
shall see that there is not even a nice symmetric ana-
log of composition for triples. So instead, we add all
possible joins that keep the algebra closed. The result-
ing language is called Triple Algebra, denoted by TriAL.
We then add an iteration mechanism to it, to enable it
to express reachability queries based on different joins,
and obtain Recursive Triple Algebra TriAL∗.

The algebra TriAL∗ can express both reachability pat-
terns above, as well as queries we prove to be inexpress-
ible in nSPARQL. It has a declarative language asso-
ciated with it, namely a fragment of Datalog. It has
good query evaluation bounds: combined complexity
is polynomial, given by low-degree polynomials. More-
over, we exhibit a fragment with complexity of the order
O(|e| · |O| · |T |), where e is the query, O is the set of ob-
jects, and T is the set of triples. This is a very natural
fragment, as it restricts arbitrary recursive definitions
to those essentially defining reachability properties.

The model we use is slightly more general than just
triples of objects and amounts to combining triplestores
as in, e.g., [22] with the representation of objects used in
the Neo4j database [14, 29]. Each object participating
in a triple comes associated with a set of attributes. Of
course this can be modeled via more triples, but the
model we use is conceptually cleaner and leads to a
more natural comparison with other query languages.

The first of those comparisons is with relational query-
ing. We show that TriAL lives between FO3 and FO6

(recall that FOk refers to the fragment of First-Order
Logic using only k variables). In fact it contains FO3,
is contained in FO6, and is incomparable with FO4 and
FO5. A similar results holds for TriAL∗ and transitive
closure logic.

On the graph querying side, we show that the naviga-
tional power of TriAL∗ subsumes that of both regular
path queries and nested regular expressions. In fact it
subsumes a version of graph XPath recently proposed
for graph databases [25]. We also compare it with con-
junctive RPQs [12] and some of their extensions studied
in [10, 11]. When it comes to graphs with data held in
their nodes, we show that TriAL∗ continues to subsume
some of the formalisms proposed in that context, such
as graph XPath expanded with node tests and some
types of regular expressions with data values [26, 25].

2

c) Give for Reach→ the equivalent TriAL definition using left Kleene closure and for Reach↗ the equivalent
TriAL definiton using right Kleene closure.

Exercise 2 (Mandatory Exercise: SPARQL 1.1, 3+3+3+3+3 = 15 points)
Consider the RDF document that models a social graph in a music domain:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix lb: <http://example.org/lastfm/> .

lb:bob foaf:knows lb:user2, lb:user3, lb:user4 ;

foaf:age 25 ;

lb:listenedTo lb:track1, lb:track2 ;

lb:topArtist lb:artist1, lb:artist2 .

lb:user2 foaf:knows lb:user5, lb:user6 ;

foaf:age 40 ;

lb:listenedTo lb:track1, lb:track2, lb:track3 ;

lb:topArtist lb:artist2, lb:artist4 .

lb:user3 foaf:knows lb:user5, lb:bob, lb:user6 ;

foaf:age 19 ;

lb:listenedTo lb:track2, lb:track3, lb:track4 ;

lb:topArtist lb:artist2, lb:artist3 .

lb:user4 lb:listenedTo lb:track2, lb:track3, lb:track4 ;

foaf:age 61 ;

lb:topArtist lb:artist3, lb:artist4, lb:artist5 .

lb:user5 foaf:knows lb:user7 ;

foaf:age 23 ;

lb:topArtist lb:artist1, lb:artist3 .

Formulate the following requests as SPARQL 1.1 queries. Evaluate them on the given RDF document
and write down the final result.

a) Find all pairs of distinct users that have a common friend.
b) Find all users that

- can be reached from bob by following the Friend-of-a-Friend path at most 3 times and
- listened to at least two tracks.

c) What are the most popular tracks that users listened to at least two times? The popularity of a track
corresponds to the number of times a song was listened.

d) Determine all users that know at least two other users which are older than 20. Consider only direct
friendship relationships.

e) Give the minimal age out of all users that
- can be reached from bob by following the Friend-of-a-Friend path arbitrary times and
- refer to artist1 as a top artist.

2

